Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures.

Supplementary Appendix: Results for models \mathcal{M}_1 to \mathcal{M}_{11}

Worapree Maneesoonthorn, Catherine S. Forbes and Gael M. Martin July 25, 2016

Abstract

In this supplement we provide additional posterior results that complement those documented in Section 4 of the main text. Specifically, we report Bayesian point and interval estimates of the static parameters of models \mathcal{M}_1 to \mathcal{M}_{11} (specified in Table 2 of the main text). The prior distributions described in Table 5 (Appendix A of the main text) are employed - where appropriate - for the nested models. These prior distributions are also applied to the common parameters in the non-nested models \mathcal{M}_5 to \mathcal{M}_7 , with the priors for the jump intensity parameters in those models being uniform and conforming to the theoretical restrictions that the model-implied unconditional jump intensities are between 0 and 1. The prior distributions employed for the realized GARCH specifications \mathcal{M}_{10} to \mathcal{M}_{11} conform to the stationarity conditions underpinning the model. All eleven models are estimated using the S&P500 data over the sample period from January 3, 1996 to June 23, 2014, inclusive. The marginal posterior means (MPMs), 95\% highest posterior density (HPD) intervals, along with the inefficiency factors associated with the relevant MCMC draws are recorded in Tables A1 to A11, respectively. Each table also contains the model-implied instantaneous and time lagged co-jump statistics.

^{*}O.Maneesoonthorn@mbs.edu. Melbourne Business School, The University of Melbourne.

[†]Catherine.Forbes@monash.edu. Department of Econometrics and Business Statistics, Monash University.

[‡]Corresponding author: gael.martin@monash.edu. Department of Econometrics and Business Statistics, Monash University.

Table A1: Posterior summaries for model \mathcal{M}_1 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

\mathcal{M}_1 :	$\beta_{vn}^{(-)}$	= 0
\mathcal{M}_1 :	β_{vp}	= (

$\mathcal{M}_1: \beta_{vp}^{(-)} = 0$			
Parameter	MPM	95% HPD interval	Inefficiency Factor
μ	0.197	(0.137, 0.253)	1.53
γ	-8.610	(-9.961, -5.540)	1.02
ho	-0.355	(-0.420, -0.286)	7.35
$\overline{\mu_p}$	-0.412	(-0.438, -0.405)	6.70
γ_p	11.297	(10.081, 12.390)	30.16
σ_p	0.208	(0.189, 0.226)	14.37
π_p	0.382	(0.301, 0.466)	11.43
α	$9.16e^{-4}$	$(2.73e^{-5}, 3.41e^{-3})$	1.83
eta	0.803	(0.613, 0.948)	16.21
σ_{M_p}	0.182	(0.162, 0.202)	15.34
ψ_0	1.044	(0.772, 1.228)	204.06
ψ_1	1.303	(1.253, 1.340)	144.57
σ_{BV}	0.436	(0.422, 0.450)	6.59
κ	0.116	(0.092, 0.142)	54.74
heta	$8.08e^{-3}$	$(7.30e^{-3}, 8.96e^{-3})$	15.33
σ_v	0.016	(0.014, 0.017)	20.22
$_{\perp}\mu_{v}$	$9.25e^{-3}$	$(7.80e^{-3}, 0.011)$	34.11
δ^p_0	0.134	(0.109, 0.173)	14.07
$lpha_p$	0.097	(0.073, 0.128)	9.57
$rac{lpha_p}{eta_{pp}}$	0.062	(0.048, 0.079)	11.67
δ_0^v	0.123	(0.084, 0.165)	46.73
$lpha_v$	0.035	(0.024, 0.047)	83.77
eta_{vv}	0.031	(0.021, 0.041)	86.48
eta_{vp}	$5.94e^{-4}$	$(1.43e^{-5}, 2.04e^{-3})$	1.75
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.104	(0.063, 0.151)	24.76
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.114	(0.069, 0.163)	27.59

Table A2: Posterior summaries for model \mathcal{M}_2 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

\mathcal{M}_2 : β	$\beta_{nn} =$	$\beta_{vn}^{(-)}$	=	0
---------------------------	----------------	--------------------	---	---

\mathcal{M}_2 : $\beta_{vp} = \beta_{vp}' = 0$			
Parameter	MPM	95% HPD interval	Inefficiency Factor
μ	0.196	(0.140, 0.252)	1.52
γ	-8.674	(-9.963, -5.655)	0.98
ho	-0.354	(-0.419, -0.290)	6.39
μ_p	-0.424	(-0.442, -0.407)	7.82
γ_p	11.655	(10.564, 12.810)	25.73
σ_p	0.207	(0.189, 0.224)	12.99
π_p	0.383	(0.301, 0.462)	11.46
α	$8.57e^{-4}$	$(1.73e^{-5}, 3.28e^{-3})$	1.92
β	0.797	(0.625, 0.945)	17.82
σ_{M_p}	0.183	(0.164, 0.202)	12.72
ψ_0	1.114	(0.923, 1.316)	130.50
ψ_1	1.316	(1.280, 1.356)	94.00
σ_{BV}	0.436	(0.421, 0.450)	6.60
κ	0.114	(0.091, 0.137)	53.80
heta	$8.08e^{-3}$	$(7.31e^{-3}, 8.93e^{-3})$	13.79
σ_v	0.016	(0.014, 0.017)	20.41
μ_v	$8.95e^{-3}$	$(7.55e^{-3}, 0.011)$	44.31
$\frac{\mu_v}{\delta_0^p}$	0.135	(0.109, 0.171)	15.03
$lpha_p$	0.097	(0.072, 0.127)	10.63
eta_{pp}	0.062	(0.047, 0.080)	13.97
$rac{lpha_p}{eta_{pp}} \ rac{\delta^v_0}{\delta^v_0}$	0.122	(0.082, 0.161)	43.19
$lpha_v$	0.032	(0.019, 0.048)	170.82
eta_{vv}	0.028	(0.017, 0.042)	159.08
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.108	(0.071, 0.146)	16.05
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.117	(0.075, 0.157)	17.94

Table A3: Posterior summaries for model \mathcal{M}_3 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

\mathcal{M}_3 : $\Delta N_t^p = \Delta N_t^v$ for all $t = 1,,$	\mathcal{M}_3 :	$\Delta N_t^p =$	ΔN_{\star}^{v}	for	all	t =	1	T
---	-------------------	------------------	------------------------	-----	-----	-----	---	---

\mathcal{M}_3 : $\Delta N_t = \Delta N_t$ for all t			
Parameter	MPM	95% HPD interval	Inefficiency Factor
μ	0.232	(0.166, 0.292)	1.14
γ	-7.910	(-9.925, -3.900)	1.11
ho	-0.397	(-0.451, -0.340)	6.66
$\overline{\ \mu_p}$	-0.436	(-0.454, -0.419)	8.74
γ_p	12.178	(11.027, 13.057)	36.97
σ_p	0.197	(0.177, 0.217)	14.59
π_p	0.518	(0.243, 0.795)	170.94
α	0.088	(0.081, 0.096)	0.99
eta	0.700	(0.406, 0.923)	1.02
σ_{M_p}	0.195	(0.175, 0.214)	14.02
$\overline{\psi_0}$	1.245	(1.052, 1.500)	185.76
ψ_1	1.357	(1.318, 1.403)	129.77
σ_{BV}	0.455	(0.442, 0.469)	3.51
κ	0.034	(0.026, 0.043)	2.39
heta	0.014	(0.012, 0.015)	1.17
σ_v	0.020	(0.018, 0.021)	22.14
μ_v	$8.05e^{-3}$	$(8.00e^{-3}, 8.24e^{-3})$	1.03
$\frac{\mu_v}{\delta_0^p = \delta_0^v}$	$2.22e^{-4}$	$(5.41e^{-6}, 8.35e^{-4})$	1.03
$\alpha_p = \alpha_v$	0.140	(0.044, 0.282)	20.97
$\hat{eta_{pp}} = eta_{vv}$	0.078	$(4.24e^{-3}, 0.203)$	10.25
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	1.00	N/A	N/A
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.00	N/A	N/A

Table A4: Posterior summaries for model \mathcal{M}_4 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

\mathcal{M}_4 :	$\Delta N_t^v =$	0 for	all $t =$	1,, <i>T</i>

$\frac{Nt_4. \ \Delta N_t = 0 \text{ for all } t = 1}{\text{Parameter}}$	MPM	95% HPD interval	Inefficiency Factor
$\overline{\mu}$	0.205	(0.142, 0.263)	1.40
γ	-8.270	(-9.946,-4.630)	1.12
$\stackrel{\cdot}{ ho}$	-0.336	(-0.388, -0.283)	5.15
$\overline{\mu_p}$	-0.436	(-0.454, -0.419)	6.90
γ_p	12.728	(11.617, 13.921)	22.18
σ_p	0.210	(0.191, 0.227)	12.42
π_p	0.405	(0.330, 0.484)	11.91
α	$8.51e^{-4}$	$(2.19e^{-5}, 3.20e^{-3})$	1.82
β	0.800	(0.602, 0.941)	22.64
σ_{M_p}	0.182	(0.162, 0.201)	13.54
$\overline{\psi_0}$	1.340	(1.157, 1.518)	130.98
ψ_1	1.366	(1.330, 1.402)	92.92
σ_{BV}	0.450	(0.437, 0.464)	3.85
κ	0.036	(0.028, 0.045)	2.43
heta	0.013	(0.012, 0.015)	1.11
σ_v	0.020	(0.018, 0.021)	18.91
δ_0^p	0.138	(0.110, 0.177)	17.63
$lpha_p$	0.097	(0.072, 0.127)	11.07
eta_{pp}	0.062	(0.047, 0.078)	14.67
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.00	N/A	N/A
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.00	N/A	N/A

Table A5: Posterior summaries for model \mathcal{M}_5 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

11.	ſ	$\delta_t^p = \alpha_{p_0} + \alpha_p V_t$ and
\mathcal{N}_{15} .		$\delta_t^p = \alpha_{p_0} + \alpha_p V_t$ and $\delta_t^v = \alpha_{v_0} + \alpha_v V_t$ for all $t = 1,, T$

$0_t^\circ = \alpha_{v_0} + \alpha_v V_t \text{ in}$	1 an t - 1	,, <i>1</i>	
Parameter	MPM	95% HPD interval	Inefficiency Factor
$\overline{\mu}$	0.196	(0.135, 0.252)	1.54
γ	-8.639	(-9.960, -5.533)	1.04
ho	-0.328	(-0.390, -0.264)	6.31
μ_p	-0.420	(-0.437, -0.403)	7.40
γ_p	11.223	(10.055, 12.249)	26.18
σ_p	0.208	(0.189, 0.226)	13.85
π_p	0.381	(0.291, 0.467)	16.51
α	$9.24e^{-4}$	$(2.45e^{-5}, 3.44e^{-3})$	1.64
eta	0.770	(0.563, 0.941)	23.25
σ_{M_p}	0.183	(0.163, 0.203)	14.41
$\overline{\psi_0}$	1.062	(0.865, 1.248)	152.61
ψ_1	1.308	(1.270, 1.346)	111.28
σ_{BV}	0.440	(0.426, 0.453)	5.07
κ	0.087	(0.073, 0.100)	17.21
heta	$9.13e^{-3}$	$(8.20e^{-3}, 0.010)$	11.38
σ_v	0.016	(0.015, 0.018)	23.18
μ_v	0.012	$(9.63e^{-3}, 0.015)$	51.06
δ_0^p	0.140	(0.111, 0.189)	21.36
$lpha_p$	0.161	$(3.73e^{-3}, 0.597)$	2.02
δ_0^v	0.066	(0.046, 0.086)	22.23
$lpha_v$	2.807	(2.338, 2.967)	33.32
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.052	(0.032, 0.075)	8.01
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.056	(0.035, 0.080)	8.90

Table A6: Posterior summaries for model \mathcal{M}_6 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

J	$\delta_t^p = \alpha_{p_0} + \alpha_{p_1} V_t + \alpha_{p_2} V_t^2$ and
\mathcal{N}_6 :	$\begin{cases} \delta_t^p = \alpha_{p_0} + \alpha_{p_1} V_t + \alpha_{p_2} V_t^2 \text{ and} \\ \delta_t^v = \alpha_{v_0} + \alpha_{v_1} V_t + \alpha_{v_2} V_t^2 \text{ for all } t = 1,, T \end{cases}$

$0_t = \alpha_{v_0} + \alpha_{v_1} v_t +$	α_{v2} γ_t 10	t = 1,, I	
Parameter	MPM	95% HPD interval	Inefficiency Factor
μ	0.192	(0.1304, 0.250)	1.57
γ	-8.589	(-9.959, -5.460)	0.99
ho	-0.324	(-0.389, -0.259)	7.67
μ_p	-0.419	(-0.436, -0.403)	7.68
γ_p	11.103	(10.060, 12.391)	32.74
σ_p	0.209	(0.187, 0.226)	16.86
π_p	0.383	(0.301, 0.464)	12.13
α	$9.53e^{-4}$	$(2.60e^{-5}, 3.46e^{-3})$	1.88
eta	0.701	(0.431, 0.923)	40.62
σ_{M_p}	0.183	(0.162, 0.205)	17.80
$\overline{\psi_0}$	1.037	(0.863, 1.253)	144.04
ψ_1	1.303	(1.268, 1.344)	103.62
σ_{BV}	0.441	(0.428, 0.455)	5.00
κ	0.081	(0.069, 0.095)	17.70
heta	$9.52e^{-3}$	$(8.55e^{-3}, 0.011)$	9.62
σ_v	0.017	(0.015, 0.018)	20.60
μ_v	0.013	(0.010, 0.016)	36.47
δ_0^p	0.158	(0.112, 0.247)	18.45
$lpha_{p1}$	0.425	$(9.07e^{-3}, 1.443)$	6.12
$lpha_{p2}$	-1.977	(-9.317, 5.539)	1.21
$\frac{\alpha_{p2}}{\delta_0^v}$	0.054	(0.038, 0.073)	18.45
α_{v1}	2.549	(1.547, 2.950)	10.56
$lpha_{v2}$	0.790	(-6.394, 8.867)	1.34
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.046	(0.022, 0.076)	24.54
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.049	(0.024, 0.078)	23.05

Table A7: Posterior summaries for model \mathcal{M}_7 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

$$\mathcal{M}_{7}: \begin{cases} \delta_{t}^{p} = \frac{\exp(\alpha_{p_{0}} + \alpha_{p}V_{t})}{1 + \exp(\alpha_{p_{0}} + \alpha_{p}V_{t})} \text{ and} \\ \delta_{t}^{v} = \frac{\exp(\alpha_{v_{0}} + \alpha_{v}V_{t})}{1 + \exp(\alpha_{v_{0}} + \alpha_{v}V_{t})} \text{ for all } t = 1, ..., T \end{cases}$$

$t = 1 + \exp(\alpha_{v_0} + \alpha_v V)$	t)		
Parameter	MPM	95% HPD interval	Inefficiency Factor
$\overline{\mu}$	0.202	(0.143, 0.258)	1.58
γ	-8.759	(-9.963, -5.777)	1.06
ho	-0.322	(-0.389, -0.254)	6.41
μ_p	-0.419	(-0.435, -0.402)	7.91
γ_p	11.134	(9.958, 12.241)	33.88
σ_p	0.209	(0.191, 0.226)	13.13
π_p	0.385	(0.307, 0.471)	11.48
α	$9.02e^{-4}$	$(2.43e^{-5}, 3.20e^{-3})$	1.76
eta	0.759	(0.534, 0.944)	36.90
σ_{M_p}	0.182	(0.162, 0.201)	13.95
$\overline{\psi_0}$	1.024	(0.827, 1.230)	210.16
ψ_1	1.298	(1.258, 1.338)	151.42
σ_{BV}	0.429	(0.415, 0.443)	6.36
κ	0.143	(0.110, 0.161)	51.51
heta	$8.04e^{-3}$	$(7.31e^{-3}, 8.87e^{-3})$	15.21
σ_v	0.016	(0.015, 0.018)	22.10
μ_v	$8.31e^{-3}$	$(7.05e^{-3}, 0.010)$	47.81
δ_0^p	0.143	(0.110, 0.200)	43.62
$lpha_{p_0}$	-1.823	(-2.108, -1.417)	40.32
$lpha_p$	1.171	(0.035, 3.877)	2.95
δ_0^v	0.159	(0.111, 0.209)	75.80
$lpha_{v_0}$	-3.083	(-3.430, -2.771)	34.50
$lpha_v$	67.697	(51.550, 86.089)	117.67
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.139	(0.086, 0.194)	36.05
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.147	(0.091, 0.205)	37.04
	· · · · · · · · · · · · · · · · · · ·		

Table A8: Posterior summaries for model \mathcal{M}_8 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

\mathcal{M}_8 : $\delta_t^p = \delta_0^p$, $\delta_t^v = \delta_0^v$ for all t	t = 1		T
---	-------	--	---

$\frac{\mathcal{N}_{18}}{\mathcal{D}_{1}}$			T 00
Parameter	MPM	95% HPD interval	Inefficiency Factor
μ	0.195	(0.135, 0.250)	1.59
γ	-8.543	(-9.960, -5.331)	1.09
ho	-0.331	(-0.392, -0.270)	6.86
$\overline{\mu_p}$	-0.422	(-0.442, -0.405)	11.28
γ_p	11.397	(10.135, 12.977)	49.19
σ_p	0.210	(0.191, 0.227)	13.29
π_p	0.385	(0.304, 0.469)	13.29
α	$8.94e^{-4}$	$(2.28e^{-5}, 3.28e^{-3})$	1.82
eta	0.764	(0.540, 0.943)	24.77
σ_{M_p}	0.182	(0.162, 0.203)	15.01
$\overline{\psi_0}$	1.101	(0.852, 1.374)	283.17
ψ_1	1.318	(1.269, 1.368)	204.54
σ_{BV}	0.447	(0.433, 0.460)	4.57
κ	0.052	(0.042, 0.063)	14.12
heta	0.011	$(9.36e^{-3}, 0.012)$	6.51
σ_v	0.017	(0.015, 0.018)	30.89
μ_v	0.017	(0.012, 0.023)	86.26
δ_0^p	0.142	(0.110, 0.197)	23.80
$rac{\delta_0^p}{\delta_0^v}$	0.024	(0.015, 0.036)	18.89
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.018	(0.007, 0.030)	7.61
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.019	(0.007, 0.033)	10.84

Table A9: Posterior summaries for model \mathcal{M}_9 , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

 \mathcal{M}_9 : $\delta_t^p = 0$, $\delta_t^v = 0$ for all t = 1, ..., T

Parameter	MPM	95% HPD interval	Inefficiency Factor
$\overline{\mu}$	0.217	(0.159, 0.272)	1.18
γ	-7.916	(-9.916, -3.922)	1.21
ho	-0.287	(-0.342, -0.229)	4.90
ψ_0	0.309	(0.222, 0.404)	19.02
ψ_1	1.090	(1.071, 1.110)	23.31
σ_{BV}	0.470	(0.457, 0.483)	19.60
κ	0.038	(0.029, 0.050)	1.52
heta	0.013	(0.012, 0.015)	1.02
σ_v	0.023	(0.021, 0.025)	11.43
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.000	N/A	N/A
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.000	N/A	N/A

Table A10: Posterior summaries for model \mathcal{M}_{10} , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

$$\mathcal{M}_{10}: \begin{cases} r_t = \sqrt{h_t} z_t \\ h_t = \omega + \beta h_{t-1} + \gamma B V_{t-1} \text{ and} \\ B V_t = \xi + \varphi h_t + \tau_1 z_t + \tau_2 (z_t^2 - 1) + u_t \end{cases}$$
Parameter MPM 95% HPD in

Parameter	MPM	95% HPD interval	Inefficiency Factor
ω	0.008	(0.007, 0.009)	346.80
β	0.615	(0.570, 0.647)	403.06
γ	0.083	(0.067, 0.093)	494.23
ξ	-0.079	(-0.103, -0.068)	165.17
arphi	3.901	(3.454, 4.615)	161.66
$ au_1$	-0.002	(-0.003, -0.001)	3.38
$ au_2$	0.003	(0.003, 0.004)	3.47
σ_u	0.034	(0.033, 0.034)	3.42
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.000	N/A	N/A
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.000	N/A	N/A

Table A11: Posterior summaries for model \mathcal{M}_{11} , based on S&P500 stock index data from January 3, 1996 to June 23, 2014, inclusive.

$$\mathcal{M}_{11}: \begin{cases} r_t = \sqrt{h_t} z_t \\ \ln h_t = \omega + \beta \ln h_{t-1} + \gamma \ln B V_{t-1} \text{ and} \\ \ln B V_t = \xi + \varphi \ln h_t + \tau_1 z_t + \tau_2 (z_t^2 - 1) + u_t \end{cases}$$

		- (t) ,	
Parameter	MPM	95% HPD interval	Inefficiency Factor
ω	-0.501	(-0.587, 0.427)	23.48
β	0.527	(0.492, 0.555)	94.80
γ	0.363	(0.336, 0.386)	78.55
ξ	0.742	(0.525, 0.928)	11.45
arphi	1.173	(1.125, 1.214)	11.72
$ au_1$	-0.094	(-0.106, -0.084)	3.41
$ au_2$	0.059	(0.054, 0.063)	3.46
σ_u	0.524	(0.513, 0.533)	3.38
$\Pr\left(\Delta N_t^v = 1 \middle \Delta N_t^p = 1\right)$	0.000	N/A	N/A
$\Pr\left(\Delta N_{t+1}^v = 1 \Delta N_t^p = 1\right)$	0.000	N/A	N/A